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Abstract 

The hydrodynamic instability of unmagnetized quantum plasma layer 

supported by magnetized vacuum layer is investigated. The plasma is 

considered as incompressible, inviscid and has exponentially varying density. 

The relation between square normalized growth rate and square normalized 

wave number is obtained and analyzed. The results are shown that, the 

interface is more stability in the presence of quantum effect beside the 

magnetic field effect.                                                                                                
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1.… …… …… ..Introduction                                                                                             

The field of quantum plasmas has been introduced since long ago. 

Klimontovich and Silin [1] derived a general kinetic equation for quantum 

plasmas and studied the dispersion properties of electromagnetic waves. 

Some other developments of that time include the equilibrium theory of 

quantum plasmas using a procedure similar to Feynman's methods in field 

theory [2], dielectric formulation of quantum statistics in random phase 

approximation [3]; and the self consistent field approach to many-electron 

problem [4]. For non-equilibrium homogenous systems, kinetic equations 

have been derived by Balescu [5]. Guernsey [6] used an approach originally 

developed by Bogoliubov to present a unified theory of equilibrium and non-

equilibrium quantum plasmas. Pines [7] studied the dynamics of quantum 

plasmas with particular attention to the relationship between individual particle 

and collective behavior. A general theory of electromagnetic properties of the 

electron gas in a quantizing magnetic field was also developed treating the 

electrons quantum mechanically [8-9]. Quantum plasmas have received much 

attention during the last decade due to variety of reasons. The main reason 

for this interest is the manifold applications of quantum plasmas from 

nanoscience [10] to astrophysics [11].                                                                             

In magnetic fusion research interface problem arise naturally the form 

the requirement that thermonuclear plasma be confined and isolated from the 

outside world by a vacuum magnetic field. The plasma-vacuum interface 

problem in magneto-hydrodynamics was presented by Goedbloed [12]. The 

Rayleigh-Taylor instability (RTI) of plasma-vacuum boundary with the aid of 



 

 

an ideal one-fluid Hall model corresponding to the limit of a large ion Larmor 

radius was studied Velikovich [13]. The stability of gravitational compressible 

surface modes of a plasma-vacuum interface is studied by Grattojn et al. [14] 

and by Alejandro et al. [15].                                                                                                          

In the last years, the hydrodynamic instability on the interface between 

a vacuum and quantum plasma has attracted much attention because of wide 

applications in many areas such as laser physics, plasma spectroscopy, 

plasma technology, and surface science [16-18]. For example, plasma and 

vacuum technologies are used in the microelectronics, communications, 

biomedical and other modern manufacturing industries. Vacuum plasma 

processing is already a well-proven and widely-used technique for etching 

and surface modification in the electronics industry. It is being increasingly 

used by the aerospace, automotive, medical, military and packaging 

industries for cleaning and surface engineering of plastics, rubbers and 

natural fibers as well as for replacing CFCs for cleaning metal components, 

polypropylene automotive components such as car bumpers, door mirror 

housings and dash board components are plasma treated before painting.                                                       

The instability of quantum plasma-vacuum interface is studied of many 

different models[19-23]. The vacuum- quantum plasma composed of electron, 

including the effects of a quantum statistical Fermi electron temperature and 

the system is acted upon by an electromagnetic field ( ),,( zyx BEE  TM-model) 

is studied by Lazar et al. [19]. In this model the initial values for electric and 

magnetic field were vanished ( ,000 == BE Electrostatic model). The same 

model is considered by Mohamed [20], but in his model the initial value of 



 

 

magnetic field was taken account ( yeBB 00 =
r

, transverse magnetic field). The 

pervious model under the effect of electromagnetic field ( ),,( zyx EBB , TE-

model) is studied by Mohamed and Abdel Aziz [21]. The instability of the 

interface between a quantum magneto-plasma composed of electrons and 

positrons, and vacuum are studied by Misra et al. [22]. In this study the 

external magnetic field lies in the zx − plane making an angle θ  with the z  

axis. A quantum surface mode at a plasma-vacuum interface with uniform 

magnetic field is studied in quantum electron-hole semiconductor plasma by 

Misra. [23]. In the above studies [19-23] the systems had a small-amplitude 

perturbation, where some terms (higher orders derivatives) of the linearized 

equations are deleted                                                                                                

In this paper, the classical RTI model in refs. (12, 13) will be again 

studied in quantum plasmas. the surface of discontinuity ( 0=z ) has 

considered between infinitely conducting plasma in the half-space 0<z and a 

vacuum in the other half-space 0>z , that has been permeated by a uniform 

horizontal magnetic field ( xeBB
rr

00 = ). Here, we use a system of Cartesian 

coordinates, where −z axis in the vertical direction. A gravitational acceleration

),0,0( gg =  directed from the plasma towards the vacuum. In this analysis the 

perturbation will be superabundant (high-speed), such that the system can not 

return to the initial case, thus all the terms, which will rise in the linearized 

equations, will be considered.  

 



 

 

2. Governing equations and linear perturbations                          

For incompressible quantum plasma as a fluid of electrons and immobile ions 

the relevant equations may be written as (see refs. 19 -26) 
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where ),,(U
zy

uuux

r
is the velocity, ρ  is the density, p  thermal pressure, g  is 

the gravitational acceleration. Quantum effects )(Q
v

in equation (1) is 

represented by Bohm Potential (see refs. 25, 26). η  is the displacement which  

is a function of yx,  and t .                                                                                                                            

Now, if we wish to study quantum plasma-vacuum system with an interface 

need to supplement Eqs. (1)-(4) with the equations describing the vacuum 

magnetic field B
r

:                                                                                           

0=⋅∇ B
rr

,              0=×∇ B
rr

.                                                                           (5) 

These equations are all that is left from Maxwell’s equations when the 

displacement current is negligible. So that ϕ∇=
rr

B  may be obtained as the 

gradient of a scalar ϕ  which satisfies the equations                                                                               

0=∇ ϕ2 ,                0=∇×∇ ϕ
rr

.                                                                        (6) 

The dynamic boundary condition across the interface of plasma-vacuum is: 
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the brackets >< is the jump across the interface and µ  is magnetic permeability. 

The condition on the magnetic field at the interface with a perfect conductor is 

0== ∇⋅⋅ ϕ
rrrr

nBn ,                                                                                           (8) 

where n
r

 is the unit vector which is the outward normal to the surface. This 

vector is defined by ),,,( 0ztyxzf η−= .  According to nonlinear Fourier 

perturbation and elaborated by Callebaut, where every physical quantity (say 

X ) can be expanded in a series ε : 

...........................XεXεXεXX 3
3

2
2

10 ++++=                                                (9) 

where ε  is the amplitude of the first order term at all times, t)exp(εε 0 ω= and 

0ε  is its amplitude at t = 0 and σω i-  =  is the frequency of perturbations or the 

rate at which the system departs from equilibrium thee initial state (Plasma 

frequency). Then, the linearized equations of quantum plasma layer (by Eqs. 

(1)- (4)) may be written as                                                   
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where 1Q
r

 is given in Eq. 7 in ref [25].                                                          
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and the fluid is arranged in horizontal strata, then 0ρ  is a function of the 



 

 

vertical coordinate ( z ) only ( )(00 zρρ = ). So, the system of equations (10)-(13) 

can be put as:                                                                             
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where 1xQ , 1yQ  and 1zQ  are given in Eqs. (13)- (15) in Hoshoudy.                          

Now, we put                                                                                  

ψcos)(),,( 11 zXzyxX =  for 1X equal to 11, Puz  and 1ρ ,                                   (20) 

ψsin)(),,( 11 zXzyxX =  for 1X equal to 1xu and 1yu ,                                         (21) 

where ykxk yx +=ψ  , xk  and xk  are constants.                                                         

Using the expressions (20) and (21) in the system of Eqs. (14)-(19), we have 
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1110 )sin()()sin()( yyy Qzpkzu += ψψωρ ,                                                           (23) 
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where 1xQ , 1yQ  and 1zQ  are given in Eqs. (22)- (24), respectively, in ref. [25].                                                                           

Eliminating some of the variables from the system of Eqs. (22)-(27),we have 

[ ] ,0)( 1
02

0

21202

2

1

2
22

0 =





++−








+







++ z

zz u
dz

d
gCk

dz

du
Bk

dz

d

dz

ud
Ak

ρ
ωρ

ρ
ωωρ       (28) 

where BA,  and C  are given in Eq (27), in ref. [12].                                                   

For the vacuum case, the linear equations may be written as follows: 01 =∇ ϕ2

,  01 =∇×∇ ϕ
rr

.                                                                                               (29) 

Now, if we put ψϕϕ sin)(),,( 11 zzyx = , then Eq. (29) takes the form 
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The linear case of Eqs. (7) and (8), respectively, takes the form: 
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Now, we will introduce the solutions for the two regions, where plasma layer 

supported by vacuum layer that has been permeated by a uniform magnetic 

field in the −x direction ( )xeBB
rr

00 = . Plasma region (Region (I)) through the 

range 0<z , while the vacuum region (Region (II)) through the range z<0 . 

Region (I) )0( <<−∞ z :                                                                                              

Her, we consider the density distribution is given by )/exp()0()( 00 DLzz ρρ = , 



 

 

where )0(0ρ  and DL  are constants, so Eq. (28) becomes 
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=ω ,h  is the Plank’s constant, 

im  the ion mass and 
em  is the 

electron mass.                                                                                                 

The solution of last equation in this region will be as following: 
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if we select 1=a , we will find that:                   
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Region (II) )0( ∞<< z :                                                                                                        

The solution of Eq. (30) in this region is )(exp)(1 kzbz −=ϕ ,  and then 
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(37) Now, using the results (35) and (37) in the condition (31), then the 

dispersion relation for our problem (unmagnetized quantum plasma layer has 

been supported by uniform magnetized vacuum layer) given by                                                             
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If we ignore the quantum effect, then the dispersion relation (38) becomes 
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while, if we ignore both quantum and magnetic field effects, we have the 

Rayleigh-Taylor instability mode that is given by the classical expression 

2

1

)( gk=ω  see Eq. (1) ref. (12)                                                                                                     

Now, we define the following dimensionless quantities 
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Then the dispersion relation (38) becomes 
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From Eq. (40) it is not feasible to obtain analytically the value of ∗ω for the sets 



 

 

of parameters ( ∗∗
mq ωω , ). So, the dimensionless dispersion relation (40) has 

been solved numerically for different values of the physical parameters 

involved. Numerical calculations are presented in Fig. 1. There the square 

normalized growth rate 
2∗ω  is plotted against the square normalized wave 

number
2∗

k . Fig.1 shows the role of quantum term )2,1(=∗
qω  and magnetic 

field )2,1(=∗
mω  for a quantum plasma-vacuum model, where the magnitudes of 

square normalized growth rate is less than its counterpart in the case of 

quantum term only or magnetic field only.                                                                                         

Finally, we have presented the analytical results of the Rayleigh-Taylor 

instability of quantum plasma with vacuum interface, the dispersion relation is 

derived as a function of the physical parameters of the system considered in 

Eq. (40). The numerical calculations are shown that the system was more 

stability in the presence of both quantum term and horizontal magnetic field. 

This stabilizing, that happens in the presence of both quantum term and 

horizontal magnetic field. This discrepancy highlights a stabilizing role due to 

the presence of quantum term and horizontal magnetic field on Rayleigh-

Taylor instability problem (quantum plasma-vacuum), increasing the 

dissipation of any disturbance, thus providing an increased stability.                           
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Figuers Coptions  

Fig.1. The square normalized growth rate
2∗ω against the square normalized 

wave number
2∗k  with the parameters  1== ∗∗

mq ωω , 1=∗h  and 10=∗
g . 

0 1 2 3 4 5
0

5

10

15

20

Fig. 1

ω
∗

q
 = ω

∗
m
=1

ω
∗

m
 = 1

ω
∗
q  = 1

Classical case

g
∗
 = 10

S
q

u
ar

e
 o

f 
g

ro
w

th
 r

a
te

 ω
∗

2

Square of wave number k
∗
 
2

 

 


